A predictive mathematical model of the DNA damage G2 checkpoint.

نویسندگان

  • Kevin J Kesseler
  • Michael L Blinov
  • Timothy C Elston
  • William K Kaufmann
  • Dennis A Simpson
چکیده

A predictive mathematical model of the transition from the G2 phase in the cell cycle to mitosis (M) was constructed from the known interactions of the proteins that are thought to play significant roles in the G2 to M transition as well as the DNA damage- induced G2 checkpoint. The model simulates the accumulation of active cyclin B1/Cdk1 (MPF) complexes in the nucleus to activate mitosis, the inhibition of this process by DNA damage, and transport of component proteins between cytoplasm and nucleus. Interactions in the model are based on activities of individual phospho-epitopes and binding sites of proteins involved in G2/M. Because tracking phosphoforms leads to combinatorial explosion, we employ a rule-based approach using the BioNetGen software. The model was used to determine the effects of depletion or over-expression of selected proteins involved in the regulation of the G2 to M transition in the presence and absence of DNA damage. Depletion of Plk1 delayed mitotic entry and recovery from the DNA damage-induced G2 arrest and over-expression of MPF attenuated the DNA damage-induced G2 delay. The model recapitulates the G2 delay observed in the biological response to varying levels of a DNA damage signal. The model produced the novel prediction that depletion of pkMyt1 results in an abnormal biological state in which G2 cells with DNA damage accumulate inactive nuclear MPF. Such a detailed model may prove useful for predicting DNA damage G2 checkpoint function in cancer and, therefore, sensitivity to cancer therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of nibrin and AtM/ATR kinases on the G2 checkpoint under endogenous or radio-induced DNA damage.

Checkpoint response to DNA damage involves the activation of DNA repair and G2 lengthening subpathways. The roles of nibrin (NBS1) and the ATM/ATR kinases in the G2 DNA damage checkpoint, evoked by endogenous and radio-induced DNA damage, were analyzed in control, A-T and NBS lymphoblast cell lines. Short-term responses to G2 treatments were evaluated by recording changes in the yield of chromo...

متن کامل

Cross-talk between DNA damage and cell survival checkpoints during G2 and mitosis: pharmacologic implications.

In this study, we wanted to clarify the role of survivin-mediated survival signaling during G2 and M in tumor cells treated with DNA-damaging agents. As a cellular model, we selected MOLT-4 human T-cell lymphoblastic leukemia cells that overexpress survivin and nonfunctional p53. Treatment with melphalan, a classic DNA-damaging agent, led to the induction of the DNA damage checkpoint and growth...

متن کامل

G2-checkpoint abrogation in irradiated lymphocytes: A new cytogenetic approach to assess individual radiosensitivity and predisposition to cancer.

Increased yield of chromatid breaks, following in vitro G2-phase lymphocyte irradiation, can be a marker of individual radiosensitivity and cancer predisposing genes whose role is to respond to DNA damage. Mutations or polymorphisms of genes encoding DNA repair pathways may underlie the increased chromosomal radiosensitivity. However, genes that facilitate DNA damage recognition, using signal t...

متن کامل

Homeostatic control of polo-like kinase-1 engenders non-genetic heterogeneity in G2 checkpoint fidelity and timing

The G2 checkpoint monitors DNA damage, preventing mitotic entry until the damage can be resolved. The mechanisms controlling checkpoint recovery are unclear. Here, we identify non-genetic heterogeneity in the fidelity and timing of damage-induced G2 checkpoint enforcement in individual cells from the same population. Single-cell fluorescence imaging reveals that individual damaged cells experie...

متن کامل

Orchestration of DNA Damage Checkpoint Dynamics across the Human Cell Cycle.

Although molecular mechanisms that prompt cell-cycle arrest in response to DNA damage have been elucidated, the systems-level properties of DNA damage checkpoints are not understood. Here, using time-lapse microscopy and simulations that model the cell cycle as a series of Poisson processes, we characterize DNA damage checkpoints in individual, asynchronously proliferating cells. We demonstrate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 320  شماره 

صفحات  -

تاریخ انتشار 2013